Skip to content

Did task3 and task4 #91

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 24 additions & 0 deletions Tasks/daily tasks/Ashwin-Rajesh/Task3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
import numpy

import torch
import torch.nn.functional as F
import torch.nn as nn

class neural_net(nn.Module):
# Arguments : input size, output size, hidden layer sizes
def __init__(self, s_in, s_out, h_1, h_2, h_3):
super().__init__()
self.in_layer = nn.Linear(s_in, h_1)
self.h1_layer = nn.Linear(h_1, h_2)
self.h2_layer = nn.Linear(h_2, h_3)
self.out_layer = nn.Linear(h_3, s_out)

def forward(x):
x = F.sigmoid(self.in_layer(x))
x = F.sigmoid(self.h1_layer(x))
x = F.sigmoid(self.h2_layer(x))
x = F.sigmoid(self.out_layer(x))
return x

model = neural_net(10, 1, 100, 50, 10)
print(model)
173 changes: 173 additions & 0 deletions Tasks/daily tasks/Ashwin-Rajesh/Task4.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim

transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)
)
]
)

trainset = torchvision.datasets.CIFAR10(
root='~/data',
train=True,
download=False,
transform=transform
)

testset = torchvision.datasets.CIFAR10(
root='~/data',
train=False,
download=False,
transform=transform
)

trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=2
)

testloader = torch.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
num_workers=2
)

classes = (
'plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck'
)

class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x


net = Net()

loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(
net.parameters(),
lr=0.001
)

for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# data = (inputs, labels)
inputs, labels = data
optimizer.zero_grad()

outputs = net(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()

running_loss = running_loss + loss.item()
if i % 2000 == 1999:
print(
'[%d, %5d] loss: %.3f' %
(epoch + 1, i+1, running_loss/2000)
)
running_loss = 0.0
print("vola")

# 1) Just the normal code
# [1, 2000] loss: 2.303
# [1, 4000] loss: 2.303
# [1, 6000] loss: 2.301
# [1, 8000] loss: 2.299
# [1, 10000] loss: 2.296
# [1, 12000] loss: 2.289
# [2, 2000] loss: 2.257
# [2, 4000] loss: 2.209
# [2, 6000] loss: 2.161
# [2, 8000] loss: 2.085
# [2, 10000] loss: 1.978
# [2, 12000] loss: 1.925
# 82.325 seconds taken

# 2) Adding a sigmoid function at output
# [1, 2000] loss: 2.303
# [1, 4000] loss: 2.302
# [1, 6000] loss: 2.302
# [1, 8000] loss: 2.302
# [1, 10000] loss: 2.301
# [1, 12000] loss: 2.301
# [2, 2000] loss: 2.300
# [2, 4000] loss: 2.300
# [2, 6000] loss: 2.298
# [2, 8000] loss: 2.296
# [2, 10000] loss: 2.292
# [2, 12000] loss: 2.287
# 81.954 seconds taken

# 3) Case 2 with increasing learning rate to 0.01
# [1, 2000] loss: 2.243
# [1, 4000] loss: 2.140
# [1, 6000] loss: 2.084
# [1, 8000] loss: 2.056
# [1, 10000] loss: 2.041
# [1, 12000] loss: 2.021
# [2, 2000] loss: 1.995
# [2, 4000] loss: 1.990
# [2, 6000] loss: 1.969
# [2, 8000] loss: 1.954
# [2, 10000] loss: 1.946
# [2, 12000] loss: 1.937
# 84.034 seconds taken

# 4) Case 1 with learning rate 0.01
# [1, 2000] loss: 1.254
# [1, 4000] loss: 1.220
# [1, 6000] loss: 1.212
# [1, 8000] loss: 1.203
# [1, 10000] loss: 1.212
# [1, 12000] loss: 1.193
# [2, 2000] loss: 1.120
# [2, 4000] loss: 1.120
# [2, 6000] loss: 1.132
# [2, 8000] loss: 1.126
# [2, 10000] loss: 1.129
# [2, 12000] loss: 1.101
# 80.073 seconds taken

# 5) output softmax with lr = 0.01
# [1, 2000] loss: 2.303
# [1, 4000] loss: 2.302
# [1, 6000] loss: 2.302
# [1, 8000] loss: 2.302
# [1, 10000] loss: 2.301
# [1, 12000] loss: 2.293
# [2, 2000] loss: 2.274
# [2, 4000] loss: 2.261
# [2, 6000] loss: 2.239
# [2, 8000] loss: 2.208
# [2, 10000] loss: 2.179
# [2, 12000] loss: 2.151
# 81.663 seconds taken