-
Notifications
You must be signed in to change notification settings - Fork 79
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #295 from mvfki/master
Release 1.0.1
- Loading branch information
Showing
72 changed files
with
1,489 additions
and
1,616 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,8 +1,24 @@ | ||
^LICENSE$ | ||
^\.lintr$ | ||
^\.vscode | ||
^.*\.Rproj$ | ||
^\.Rproj\.user$ | ||
^\.travis\.yml$ | ||
^travis_setup\.sh$ | ||
^_config\.yml$ | ||
^vignettes/walkthrough_pbmc\.Rmd$ | ||
^docs$ | ||
^appveyor\.yml$ | ||
^vignettes/.*html$ | ||
^vignettes/articles | ||
^vignettes/Integrating_multi_scRNA_data\.rmd$ | ||
^vignettes/Integrating_scRNA_and_scATAC_data\.Rmd$ | ||
^vignettes/Integrating_multi_scRNA_data\.Rmd$ | ||
^vignettes/Parameter_selection\.Rmd$ | ||
^vignettes/SNAREseq_walkthrough\.Rmd$ | ||
^vignettes/STARmap_dropviz_vig\.Rmd$ | ||
^vignettes/UINMF_vignette\.Rmd$ | ||
^vignettes/online_iNMF_tutorial\.Rmd$ | ||
^vignettes/pbmc_alignment\.zip$ | ||
^vignettes/walkthrough_pbmc\.Rmd$ | ||
^vignettes/walkthrough_pbmc\.pdf$ | ||
^vignettes/cross_species_vig\.Rmd$ | ||
^docs | ||
^devdata |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,33 +1,35 @@ | ||
Package: rliger | ||
Version: 1.0.0 | ||
Date: 2021-03-09 | ||
Version: 1.0.1 | ||
Date: 2023-11-08 | ||
Type: Package | ||
Title: Linked Inference of Genomic Experimental Relationships | ||
Description: Uses an extension of nonnegative matrix factorization to identify shared and dataset-specific factors. See Welch J, Kozareva V, et al (2019) <doi:10.1016/j.cell.2019.05.006>, and Liu J, Gao C, Sodicoff J, et al (2020) <doi:10.1038/s41596-020-0391-8> for more details. | ||
Authors@R: c( | ||
person(given = 'Joshua', family = 'Welch', email = '[email protected]', role = c('aut', 'ctb')), | ||
person(given = 'Chao', family = 'Gao', email = '[email protected]', role = c('aut', 'ctb', 'cre')), | ||
person(given = 'Chao', family = 'Gao', email = '[email protected]', role = c('aut', 'ctb')), | ||
person(given = 'Jialin', family = 'Liu', email = '[email protected]', role = c('aut', 'ctb')), | ||
person(given = 'Joshua', family = 'Sodicoff', email = '[email protected]', role = c('aut', 'ctb')), | ||
person(given = 'Velina', family = 'Kozareva', role = c('aut', 'ctb')), | ||
person(given = 'Evan', family = 'Macosko', role = c('aut', 'ctb')), | ||
person(given = 'Yichen', family = 'Wang', email = '[email protected]', role = c('aut', 'ctb', 'cre')), | ||
person(given = 'Paul', family = 'Hoffman', role = 'ctb'), | ||
person(given = 'Ilya', family = 'Korsunsky', role = 'ctb'), | ||
person(given = 'Robert', family = 'Lee', role = 'ctb') | ||
) | ||
Author: Joshua Welch [aut, ctb], | ||
Chao Gao [aut, ctb, cre], | ||
Chao Gao [aut, ctb], | ||
Jialin Liu [aut, ctb], | ||
Joshua Sodicoff [aut, ctb], | ||
Velina Kozareva [aut, ctb], | ||
Evan Macosko [aut, ctb], | ||
Yichen Wang [aut, ctb, cre], | ||
Paul Hoffman [ctb], | ||
Ilya Korsunsky [ctb], | ||
Robert Lee [ctb] | ||
Maintainer: Chao Gao <gchao@umich.edu> | ||
Maintainer: Yichen Wang <wayichen@umich.edu> | ||
BugReports: https://github.com/welch-lab/liger/issues | ||
URL: https://github.com/welch-lab/liger | ||
License: GPL-3 | file LICENSE | ||
License: GPL-3 | ||
Imports: Rcpp (>= 0.12.10), | ||
plyr, | ||
FNN, | ||
|
@@ -38,31 +40,32 @@ Imports: Rcpp (>= 0.12.10), | |
ica, | ||
Rtsne, | ||
ggplot2, | ||
riverplot, | ||
foreach, | ||
parallel, | ||
doParallel, | ||
mclust, | ||
stats, | ||
psych, | ||
RANN, | ||
uwot, | ||
rlang, | ||
utils, | ||
hdf5r, | ||
scattermore (>= 0.7) | ||
scattermore (>= 0.7), | ||
patchwork, | ||
cowplot | ||
biocViews: | ||
LazyData: true | ||
LinkingTo: Rcpp, RcppArmadillo, RcppEigen, RcppProgress | ||
Depends: | ||
cowplot, | ||
R (>= 3.4), | ||
Matrix, | ||
methods, | ||
patchwork | ||
RoxygenNote: 7.1.1 | ||
stats, | ||
utils | ||
RoxygenNote: 7.2.3 | ||
Encoding: UTF-8 | ||
Suggests: | ||
Seurat, | ||
SeuratObject, | ||
knitr, | ||
reticulate, | ||
rmarkdown, | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
## rliger 1.0.1 | ||
|
||
- Allow setting mito pattern in `getMitoProportion()` #271 | ||
- Fix efficiency issue when taking the log of norm.data (e.g. `runWilcoxon`) | ||
- Add runable examples to all exported functions when possible | ||
- Fix typo in online_iNMF matrix initialization | ||
- Adapt to Seurat5 | ||
- Other minor fixes | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,113 +1,113 @@ | ||
# Generated by using Rcpp::compileAttributes() -> do not edit by hand | ||
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 | ||
|
||
RunModularityClusteringCpp <- function(SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename) { | ||
.Call('_rliger_RunModularityClusteringCpp', PACKAGE = 'rliger', SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename) | ||
} | ||
|
||
scaleNotCenterFast <- function(x) { | ||
.Call('_rliger_scaleNotCenterFast', PACKAGE = 'rliger', x) | ||
} | ||
|
||
rowMeansFast <- function(x) { | ||
.Call('_rliger_rowMeansFast', PACKAGE = 'rliger', x) | ||
} | ||
|
||
rowVarsFast <- function(x, means) { | ||
.Call('_rliger_rowVarsFast', PACKAGE = 'rliger', x, means) | ||
} | ||
|
||
sumSquaredDeviations <- function(x, means) { | ||
.Call('_rliger_sumSquaredDeviations', PACKAGE = 'rliger', x, means) | ||
} | ||
|
||
cpp_sumGroups_dgc <- function(x, p, i, ncol, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dgc', PACKAGE = 'rliger', x, p, i, ncol, groups, ngroups) | ||
} | ||
|
||
cpp_sumGroups_dgc_T <- function(x, p, i, ncol, nrow, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dgc_T', PACKAGE = 'rliger', x, p, i, ncol, nrow, groups, ngroups) | ||
} | ||
|
||
cpp_sumGroups_dense <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dense', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_sumGroups_dense_T <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dense_T', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_nnzeroGroups_dense <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dense', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_nnzeroGroups_dense_T <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dense_T', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_nnzeroGroups_dgc <- function(p, i, ncol, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dgc', PACKAGE = 'rliger', p, i, ncol, groups, ngroups) | ||
} | ||
|
||
cpp_in_place_rank_mean <- function(v_temp, idx_begin, idx_end) { | ||
.Call('_rliger_cpp_in_place_rank_mean', PACKAGE = 'rliger', v_temp, idx_begin, idx_end) | ||
} | ||
|
||
cpp_rank_matrix_dgc <- function(x, p, nrow, ncol) { | ||
.Call('_rliger_cpp_rank_matrix_dgc', PACKAGE = 'rliger', x, p, nrow, ncol) | ||
} | ||
|
||
cpp_rank_matrix_dense <- function(X) { | ||
.Call('_rliger_cpp_rank_matrix_dense', PACKAGE = 'rliger', X) | ||
} | ||
|
||
cpp_nnzeroGroups_dgc_T <- function(p, i, ncol, nrow, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dgc_T', PACKAGE = 'rliger', p, i, ncol, nrow, groups, ngroups) | ||
} | ||
|
||
#' Fast calculation of feature count matrix | ||
#' | ||
#' @param bedmat A feature count list generated by bedmap | ||
#' @param barcodes A list of barcodes | ||
#' | ||
#' @return A feature count matrix with features as rows and barcodes as | ||
#' columns | ||
#' @export | ||
#' @examples | ||
#' \dontrun{ | ||
#' gene.counts <- makeFeatureMatrix(genes.bc, barcodes) | ||
#' promoter.counts <- makeFeatureMatrix(promoters.bc, barcodes) | ||
#' samnple <- gene.counts + promoter.counts | ||
#' } | ||
makeFeatureMatrix <- function(bedmat, barcodes) { | ||
.Call('_rliger_makeFeatureMatrix', PACKAGE = 'rliger', bedmat, barcodes) | ||
} | ||
|
||
cluster_vote <- function(nn_ranked, clusts) { | ||
.Call('_rliger_cluster_vote', PACKAGE = 'rliger', nn_ranked, clusts) | ||
} | ||
|
||
scale_columns_fast <- function(mat, scale = TRUE, center = TRUE) { | ||
.Call('_rliger_scale_columns_fast', PACKAGE = 'rliger', mat, scale, center) | ||
} | ||
|
||
max_factor <- function(H, dims_use, center_cols = FALSE) { | ||
.Call('_rliger_max_factor', PACKAGE = 'rliger', H, dims_use, center_cols) | ||
} | ||
|
||
solveNNLS <- function(C, B) { | ||
.Call('_rliger_solveNNLS', PACKAGE = 'rliger', C, B) | ||
} | ||
|
||
ComputeSNN <- function(nn_ranked, prune) { | ||
.Call('_rliger_ComputeSNN', PACKAGE = 'rliger', nn_ranked, prune) | ||
} | ||
|
||
WriteEdgeFile <- function(snn, filename, display_progress) { | ||
invisible(.Call('_rliger_WriteEdgeFile', PACKAGE = 'rliger', snn, filename, display_progress)) | ||
} | ||
|
||
DirectSNNToFile <- function(nn_ranked, prune, display_progress, filename) { | ||
.Call('_rliger_DirectSNNToFile', PACKAGE = 'rliger', nn_ranked, prune, display_progress, filename) | ||
} | ||
|
||
# Generated by using Rcpp::compileAttributes() -> do not edit by hand | ||
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 | ||
|
||
RunModularityClusteringCpp <- function(SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename) { | ||
.Call('_rliger_RunModularityClusteringCpp', PACKAGE = 'rliger', SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename) | ||
} | ||
|
||
scaleNotCenterFast <- function(x) { | ||
.Call('_rliger_scaleNotCenterFast', PACKAGE = 'rliger', x) | ||
} | ||
|
||
rowMeansFast <- function(x) { | ||
.Call('_rliger_rowMeansFast', PACKAGE = 'rliger', x) | ||
} | ||
|
||
rowVarsFast <- function(x, means) { | ||
.Call('_rliger_rowVarsFast', PACKAGE = 'rliger', x, means) | ||
} | ||
|
||
sumSquaredDeviations <- function(x, means) { | ||
.Call('_rliger_sumSquaredDeviations', PACKAGE = 'rliger', x, means) | ||
} | ||
|
||
cpp_sumGroups_dgc <- function(x, p, i, ncol, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dgc', PACKAGE = 'rliger', x, p, i, ncol, groups, ngroups) | ||
} | ||
|
||
cpp_sumGroups_dgc_T <- function(x, p, i, ncol, nrow, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dgc_T', PACKAGE = 'rliger', x, p, i, ncol, nrow, groups, ngroups) | ||
} | ||
|
||
cpp_sumGroups_dense <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dense', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_sumGroups_dense_T <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dense_T', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_nnzeroGroups_dense <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dense', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_nnzeroGroups_dense_T <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dense_T', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_nnzeroGroups_dgc <- function(p, i, ncol, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dgc', PACKAGE = 'rliger', p, i, ncol, groups, ngroups) | ||
} | ||
|
||
cpp_in_place_rank_mean <- function(v_temp, idx_begin, idx_end) { | ||
.Call('_rliger_cpp_in_place_rank_mean', PACKAGE = 'rliger', v_temp, idx_begin, idx_end) | ||
} | ||
|
||
cpp_rank_matrix_dgc <- function(x, p, nrow, ncol) { | ||
.Call('_rliger_cpp_rank_matrix_dgc', PACKAGE = 'rliger', x, p, nrow, ncol) | ||
} | ||
|
||
cpp_rank_matrix_dense <- function(X) { | ||
.Call('_rliger_cpp_rank_matrix_dense', PACKAGE = 'rliger', X) | ||
} | ||
|
||
cpp_nnzeroGroups_dgc_T <- function(p, i, ncol, nrow, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dgc_T', PACKAGE = 'rliger', p, i, ncol, nrow, groups, ngroups) | ||
} | ||
|
||
#' Fast calculation of feature count matrix | ||
#' | ||
#' @param bedmat A feature count list generated by bedmap | ||
#' @param barcodes A list of barcodes | ||
#' | ||
#' @return A feature count matrix with features as rows and barcodes as | ||
#' columns | ||
#' @export | ||
#' @examples | ||
#' \dontrun{ | ||
#' gene.counts <- makeFeatureMatrix(genes.bc, barcodes) | ||
#' promoter.counts <- makeFeatureMatrix(promoters.bc, barcodes) | ||
#' samnple <- gene.counts + promoter.counts | ||
#' } | ||
makeFeatureMatrix <- function(bedmat, barcodes) { | ||
.Call('_rliger_makeFeatureMatrix', PACKAGE = 'rliger', bedmat, barcodes) | ||
} | ||
|
||
cluster_vote <- function(nn_ranked, clusts) { | ||
.Call('_rliger_cluster_vote', PACKAGE = 'rliger', nn_ranked, clusts) | ||
} | ||
|
||
scale_columns_fast <- function(mat, scale = TRUE, center = TRUE) { | ||
.Call('_rliger_scale_columns_fast', PACKAGE = 'rliger', mat, scale, center) | ||
} | ||
|
||
max_factor <- function(H, dims_use, center_cols = FALSE) { | ||
.Call('_rliger_max_factor', PACKAGE = 'rliger', H, dims_use, center_cols) | ||
} | ||
|
||
solveNNLS <- function(C, B) { | ||
.Call('_rliger_solveNNLS', PACKAGE = 'rliger', C, B) | ||
} | ||
|
||
ComputeSNN <- function(nn_ranked, prune) { | ||
.Call('_rliger_ComputeSNN', PACKAGE = 'rliger', nn_ranked, prune) | ||
} | ||
|
||
WriteEdgeFile <- function(snn, filename, display_progress) { | ||
invisible(.Call('_rliger_WriteEdgeFile', PACKAGE = 'rliger', snn, filename, display_progress)) | ||
} | ||
|
||
DirectSNNToFile <- function(nn_ranked, prune, display_progress, filename) { | ||
.Call('_rliger_DirectSNNToFile', PACKAGE = 'rliger', nn_ranked, prune, display_progress, filename) | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
#' dgCMatrix object of PBMC subsample data with Control and Stimulated datasets | ||
#' @format \code{dgCMatrix} object of gene expression matrix from PBMC study, | ||
#' named by "ctrl" and "stim". | ||
#' @source https://www.nature.com/articles/nbt.4042 | ||
#' @references Hyun Min Kang and et. al., Nature Biotechnology, 2018 | ||
#' @rdname liger-demodata | ||
"ctrl" | ||
|
||
#' @rdname liger-demodata | ||
"stim" |
Oops, something went wrong.